
Eur. Phys. J. D 44, 607–617 (2007)
DOI: 10.1140/epjd/e2007-00237-y THE EUROPEAN

PHYSICAL JOURNAL D

Multi-particle and high-dimension controlled order rearrangement
encryption protocols

Y. Caoa, A.-M. Wangb, X.-S. Ma, and N.-B. Zhao

Department of Modern Physics, University of Science and Technology of China, Hefei 230026, P.R. China

Received 25 October 2006 / Received in final form 9 January 2007
Published online 20 July 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. Based on controlled order rearrange encryption (CORE) for quantum key distribution using
EPR pairs [Fu.G. Deng, G.L. Long, Phys. Rev. A 68, 042315 (2003)], we propose generalized controlled
order rearrangement encryption (GCORE) protocols of N qubits and N qutrits, and concretely display
them in cases using 3-qubit, 2-qutrit maximally entangled basis states. We further show that our protocols
will become safer with an increase in dimensions and number of particles. Moreover, we carry out the
security analysis using quantum covariant cloning machine. Although the applications of the generalized
scheme need to be further studied, GCORE has many distinct features such as large capacity and high
efficiency.

PACS. 03.67.Dd Quantum cryptography – 03.67.Hk Quantum communication

1 Introduction

Cryptography is the art of providing secure communica-
tion over insecure communication channels. Currently, in
the information age, the safe of transmission of secret in-
formation is getting more and more important. One es-
sential theme of secure communication is to the distri-
bution of secret keys between sender and receiver. The
security of quantum cryptography (QC) stems from the
fundamental principles of quantum mechanics rather than
classical cryptography. An important application of QC
is the quantum key distribution (QKD), which concerns
the generation and distribution of secret key between two
legitimate users. The security of key distribution is the
most important part of the secret communication. QKD
exploits quantum mechanics principles for secret commu-
nication, which provides a secure way for transmitting the
key. To date, there are many quantum secret key protocols
such as BB84, Ekt91, B92, six-state protocol etc. [1–6],
and new quantum secret key protocols [7–16] are contin-
ually suggested.

The security of some QKD protocols in refer-
ences [1–3,7,11–18] is based on a random choices of a dif-
ferent measuring-bias, so randomness is usually a useful
ingredient in QC. The security of other QKD protocols in
references [8,9,19–21] relies on the nonlocality of quantum
systems. The Goldenberg-Vaidman scheme [8] first pro-
posed a QKD protocol using two transmission lines. This
protocol uses orthogonal states and has full efficiency; all
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the particles transmitted are used to generate secret keys.
Then, the Koashi-Imoto protocol [9] improves upon the
Goldenberg-Vaidman scheme by using an asymmetric in-
terferometer to reduce the time delay. However, two fac-
tors meant that the time delay of these schemes could not
be too short. Subsequently, Deng and Long proposed a
controlled order rearrange encryption (CORE) scheme [10]
to overcome this drawback and realize secure QKD. In
nonlocality based QKD protocols, orthogonal quantum
states are used. Security is assured by not allowing an
eavesdropper to acquire both parts simultaneously.

Currently, the CORE technique is not only suitable for
use with Einstein-Podolsky-Rosen (EPR) pairs, but is also
suitable for use with other quantum information carriers
(QICs) [10]. In recent years researchers have drawn their
attention to QKD protocols that involve multilevel sys-
tems with two parties, or multiple parties with two-level
systems. The motivation for studying multilevel QKD is
that more information can be carried by each particle, and
thereby the information flux is increased. As well some
multilevel protocols have been shown to have greater secu-
rity against eavesdropping attacks than their qubit-based
counterparts [20,24,25]. Thus, the use of multi-particle,
maximally entangled states can further guarantee security
and has higher efficiency in general.

In this paper, our main purpose is to generalize
the CORE of QC to multi-particle and/or high dimen-
sion quantum systems. Our generalized protocols have
higher efficiency, because the generalized protocols, which
are herein referred to as the GCORE here, exploit the
flollowing facts that a possible eavesdropper without
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simultaneous access to the entire quantum system cannot
recover all the information without being detected, and
the protocols employ a larger alphabet, a few-dimensional
orthogonal basis set of pure states. Consequently, we ob-
tain the maximal efficiency from this system. Based on
the reasoning that transmitted N -qudit maximally entan-
gled states can send log2 d

N bits of information in our
schemes, if we assume there are N particles with each be-
ing d dimensions, the generalized protocols also have great
capacity.

The paper is organized as follows. In Section 2, we
review the CORE protocol using EPR pairs provided by
Deng and Long. Then we generalize the CORE protocol to
the N -qubit case, specially, we present the GCORE proto-
col using 3-qubit state and check its security by the corre-
lated matrix method. In Section 3, the GCORE protocol
using N qutrits is proposed, and the GCORE protocol
using 2-qutrit is presented in detail. Moveover, we discuss
the security of qutrit GCORE using the quantum covari-
ant cloning machine. In Section 4, we present a uniform
expression for a multi-particle and/or high dimension sit-
uation. Finally, the advantages of GCORE are explained
and concluding remarks are given.

2 GCORE using N-qubit maximally entangled
basis states

2.1 Explanation of CORE protocol

To begin, let us briefly review the meaning of CORE.
Firstly, we assume that the keys are distributed between
Alice and Bob. Before transmission, Alice rearranges the
order of correlated particles and sends them to Bob. The
aim of random rearrangement is to prevent the eaves-
dropper from obtaining correlated particles simultane-
ously from different transmission channels, and an evening
process is also required to make the transmission occur
in equally spaced time intervals. Once Bob receives these
particles, he restores the order of the particles and undoes
Alice’s operations by synchronizing their measurement de-
vices, repeatedly using a priori shared control key, so that
he can make an orthogonal basis measurement. Their mea-
surement outcome is exactly what Alice has prepared. The
essence of CORE is the use of a control key as has been
used in the modified BB84 scheme [7]. The noncloning
nature ensures that it is viable.

The whole process of the CORE protocol using EPR
states has been demonstrated clearly in reference [10]. In
the following text, we generalize it to multi-particle and
high-dimensional cases, and therefore the generalized pro-
tocol is denoted as GCORE.

2.2 GCORE protocol using GHZ-basis states

In the following section, we first discuss a concrete
GCORE example using 3-qubit GHZ-basis states without
loss of generality.

(i) Alice randomly generates a sequence of GHZ-basis
states (a1, b1, c1), · · · , (am, bm, cm), where (ai, bi, ci) de-
notes one GHZ-basis state (1 ≤ i ≤ m,m is an inte-
ger) and each eight adjoining triplets are taken as one
unit of QIC. Without loss of generality, we consider the
first carrier units [(a1, b1, c1), (a2, b2, c2), · · · , (a8, b8, c8)]-
which are randomly placed with the eight GHZ-basis
states-and that can be expressed as [26]:

∣
∣ψ±
j

〉

=
1√
2

(|j〉AB |0〉C ± |3 − j〉AB |1〉C) , (1)

where j = j1j2 denotes binary notations. In their explicit
forms, eight GHZ-basis states are:

∣
∣ψ+

0

〉

= (|000〉 + |111〉) /
√

2
∣
∣ψ−

0

〉

= (|000〉 − |111〉) /
√

2
∣
∣ψ+

1

〉

= (|010〉 + |101〉) /√2
∣
∣ψ−

1

〉

= (|010〉 − |101〉) /
√

2
∣
∣ψ+

2

〉

= (|100〉 + |011〉) /
√

2
∣
∣ψ−

2

〉

= (|100〉 − |011〉) /√2
∣
∣ψ+

3

〉

= (|110〉 + |001〉) /
√

2
∣
∣ψ−

3

〉

= (|110〉 − |001〉) /
√

2) (2)

and we denote them by 000, 001, 010, 011, 100, 101, 110,
and 111, respectively.

(ii) Alice sends the three parts out at equal regu-
lar time intervals to Bob through three channels. Before
these GHZ-basis states enter into the insecure transmis-
sion channel, their orders are rearranged by the GCORE
system. There are eight choices of GCORE operations; the
corresponding relationships are the following:

E0 ↔ 000, E1 ↔ 001, E2 ↔ 010, E3 ↔ 011
E4 ↔ 100, E5 ↔ 101, E6 ↔ 110, E7 ↔ 111

and the GCORE is done performed for the eight GHZ-
basis states. Let us use permutation group notation to
express them as follows

E0 =
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)

= (1) (2) (3) (4) (5) (6) (7) (8)

E1 =
(

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)

=
(
1 2

) (
3 4

) (
5 6

) (
7 8

)

E2 =
(

1 2 3 4 5 6 7 8
3 4 1 2 7 8 5 6

)

=
(
1 3

) (
2 4

) (
5 7

) (
6 8

)

E3 =
(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)

=
(
1 4

) (
2 3

) (
5 8

) (
6 7

)

E4 =
(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)

=
(
1 5

) (
2 6

) (
3 7

) (
4 8

)

E5 =
(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)

=
(
1 8

) (
2 7

) (
3 6

) (
4 5

)
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Fig. 1. (Color online) Example of GCORE using GHZ-basis
states. There are eight different GCORE operations.

Up channel

Down channel

Seven switches

Five switches

Up channel

Down channel

Fig. 2. Devices to perform GCORE operations, the loop rep-
resents a time delay of a fixed interval.

E6 =
(

1 2 3 4 5 6 7 8
7 8 5 6 3 4 1 2

)

=
(
1 7

) (
2 8

) (
3 5

) (
4 6

)

E7 =
(

1 2 3 4 5 6 7 8
6 5 8 7 2 1 4 3

)

=
(
1 6

) (
2 5

) (
3 8

) (
4 7

)

we also show this protocol using Figure 1.
The three quantum channels in this GCORE proto-

col are denoted upper, middle, and lower channels. The
upper QIC parts are transmitted according to their tem-
poral orders. A control key is used to rearrange the or-
der of the middle and lower QIC parts. For instance, if
the value of control key is 000, the operation E0 is ap-
plied. In Figure 2 there are seven switches and the or-
der of eight GHZ-basis states are unchange when switches
1, 2, 3, 4, 5, 6, 7 are in positions (up, up, up, up, up,
up, down). When the value of the control key is 001,
the operation E1 is performed, done by putting the seven
switches into positions (down, up, up, up, up, up, down),
(up, up, up, up, up, down, up), (down, up, up, up, up,
up, down), (up, up, up, up, up, down, up), (down, up,
up, up, up, up, down), (up, up, up, up, up, down, up),
(down, up, up, up, up, up, down), (up, up, up, up, up,
down, up) for the eight particles, respectively. In fact, five

switches are enough. The operation E1 can be performed,
by putting the five switches into positions (down, down,
up, up, down), (up, down, up, down, up), (down, down,
up, up, down), (up, down, up, down, up), (down, down, up,
up, down), (up, down, up, down, up), (down, down, up, up,
down), (up, down, up, down, up) for the eight particles,
respectively. The effect of using seven switches is the same
as that of using five switches. Similar combination can be
written explicitly for operations E2, E3, E4, E5, E6, E7.

(iii) Bob undoes the effect of order rearrangement. At
Bob’s site, he simply exchanges the upper, middle, and
lower parts of Alice’s GCORE apparatus, and the GCORE
operations performed by Alice will be undone.

(iv) Bob measures these carrier units to obtain the
key. After these particles are rearranged, Bob uses the
GHZ-basis measurement to read out the information de-
terminatively, which is exactly the same as the one Alice
prepared because the measurement is an orthogonal basis
one and obviously the eight GHZ-basis states are mutually
orthogonal.

Remark: to prevent Eve from stealing, we need an
evening process to ensure the same time interval between
the travel of different batches of QICs. Now, we need three
transmission lines to ensure the application of current pro-
posed scheme because 3-qubit GCORE uses GHZ-basis
state, and each particle transmits through a quantum
transmission line in equal time intervals. It is obviously
different from the case using two-transmission lines in ref-
erences [8,9]. Detailed analysis will be presented in sub-
section C below. In addition, the control keys can be used
to control the GCORE operation of a group of units to
reduce the usage of resources. For example, instead of us-
ing GCORE 001 to control operation of one unit of QICs
(eight GHZ-basis states), we can use 001 to control more
consecutive units of QICs, say 4 units or 32 GHZ-basis
states.

2.3 Security of GCORE using GHZ-basis states

Let us look at the security of GCORE using 3-qubit GHZ-
basis states. Eve has only a 1/8th chance to guess the
right GCORE operation for the eight GHZ-basis states.
If she uses the wrong GCORE operation, the three par-
ticles measured by her will be anticorrelated. Firstly if
we assume that particle A from the first GHZ-basis state,
particle B from the second GHZ-basis state and particle
C from the third GHZ-basis state are mistreated by Eve
as a GHZ-basis state, then the density operator will be

ρA1B2C3 = ρ̃A1 ⊗ ρ̃B2 ⊗ ρ̃C3

=

⎛

⎜
⎝

1
2

0

0
1
2

⎞

⎟
⎠ ⊗

⎛

⎜
⎝

1
2

0

0
1
2

⎞

⎟
⎠ ⊗

⎛

⎜
⎝

1
2

0

0
1
2

⎞

⎟
⎠ =

1
8
I8×8 (3)

where ρ̃A1 = TrB1C1 (ρA1B1C1) , ρ̃B2 =
TrA2C2 (ρA2B2C2) , ρ̃C3 = TrA3B3 (ρA3B3C3). When
ρA1B2C3 is measured in the GHZ-basis state, the result
can be any one of eight GHZ-basis states with 12.5%
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probability each. Thus Eve will introduce a 66.99% error
rate in the results. Next, if we assume particle A from the
first GHZ-basis state, and particles B C from the second
GHZ-basis state are mistreated by Eve as a GHZ-basis
state, then the density operator will be

ρA1B2C3 = ρ̃A1 ⊗ ρ̃B2C3 =

⎛

⎜
⎝

1
2

0

0
1
2

⎞

⎟
⎠ ⊗

⎛

⎜
⎜
⎜
⎜
⎝

1
2

0 0 0
0 0 0 0
0 0 0 0

0 0 0
1
2

⎞

⎟
⎟
⎟
⎟
⎠

· (4)

Eve will introduce a 76.56% error rate in these results.
In both situations, Alice and Bob can detect Eve easily
by checking a sufficiently large subset of randomly chosen
results.

Surely, Eve can perform a generalized Bell inequality
measurement on the particles, but it will be ineffective
in decrypting the control key. Let us choose a (ax, ay, az),
b (bx, by, bz), as the directions of Alice and Bob’s measure-
ments, and at the same time, c (cx, cy, cz) is also Bob’s
measurement direction. Then the correlation operator can
be written as following:

Ê = (σ̂ · a) ⊗ (σ̂ · b) ⊗ (σ̂ · c) (5)

where σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

.

The expectation values 〈E (a, b, c)〉ψ = 〈ψ| (σ̂ ·a)⊗(σ̂ ·
b)⊗ (σ̂ · c) |ψ〉 are different for different GHZ-basis states.
They are

〈E (a, b, c)〉ψ+
0

= (ax − iay) (bx − iby) (cx − icy)

+ (ax + iay) (bx + iby) (cx + icy)
〈E (a, b, c)〉ψ−

0
= − (ax − iay) (bx − iby) (cx − icy)

− (ax + iay) (bx + iby) (cx + icy)
〈E (a, b, c)〉ψ+

1
= (ax − iay) (bx + iby) (cx − icy)

+ (ax + iay) (bx − iby) (cx + icy)
〈E (a, b, c)〉ψ−

1
= − (ax − iay) (bx + iby) (cx − icy)

− (ax + iay) (bx − iby) (cx + icy)
〈E (a, b, c)〉ψ+

2
= (ax + iay) (bx − iby) (cx − icy)

+ (ax − iay) (bx + iby) (cx + icy)
〈E (a, b, c)〉ψ−

2
= − (ax + iay) (bx − iby) (cx − icy)

− (ax − iay) (bx + iby) (cx + icy)
〈E (a, b, c)〉ψ+

3
= (ax + iay) (bx + iby) (cx − icy)

+ (ax − iay) (bx − iby) (cx + icy)
〈E (a, b, c)〉ψ−

3
= − (ax + iay) (bx + iby) (cx − icy)

− (ax − iay) (bx − iby) (cx + icy) . (6)

Note their coefficients are 1/2.
For the product states |000〉, |001〉, |010〉, |011〉, |100〉,

|101〉, |110〉, |111〉, the expected values are:

azbzcz, −azbzcz, −azbzcz, azbzcz,

− azbzcz, azbzcz, azbzcz, −azbzcz (7)

respectively. If Eve takes a general Bell inequality mea-
surement on three uncorrelated particles, she will get 0
for a large number of measurements when the particles are
randomly distributed among the eight GHZ-basis states.
If Eve takes three correlated particles, she will also get 0
because eight GHZ-basis states are taken with equal prob-
ability. So Eve can gain no information about the control
key except for guessing it randomly. Because the control
key can be repeatedly used, the probability that Eve by
guessing the right control key is

(
1
2

)3Nk , where 3Nk is the
number of bits in the control key. When Nk = 100, the
probability is

(
1
8

)100, which is practically zero.
Naturally, the GCORE protocol is suitable to a N -

qubit setting scenario, too. N -qubit maximally entangled
basis states are defined as follows [26]:

∣
∣ψ±
j

〉

=
1√
2

(|j〉 |0〉 ± ∣
∣2N−1 − j − 1

〉 |1〉) (8)

where j = j1j2 · · · jN−1 denotes binary notations. Then
there are 2N different control keys, 2N operations cor-
responding to E0, E1, · · ·E2N−1 , and we need N quan-
tum channels with 2N

2 + 1 = 2N−1 + 1 switches each.
The eavesdropper Eve only guesses the rightN -GHZ-basis
states with probability 1

2N , as the density operation is
ρAB···N = 1

2N I2N×2N .

3 GCORE using N-qutrit maximally entangled
basis states

One of the motivations of considering a high dimensional
systems for QKD is to increase the amount of information
carried per particle. Another context where using a higher
dimension space might be advantageous is in key growing.
However, the practical limitations might be more severe in
realistic high-dimension cryptosystems, in particular the
influence of the detector’s quantum efficiency and dark
count rate [27,28]. This has been discussed in the related
reference [29]. We therefor will now consider the case of a
qutrit quantum system.

3.1 GCORE protocol using 2-qutrit general Bell-basis
states

Let us now consider the simplest scenario, two particles,
each particle having three levels, i.e. a 2-qutrit system. On
the whole, the four concrete processes are similar to the
analysis in Section 2.2. A recapitulation is presented in
the following section. As is known, the general Bell-basis
states can be written as [30]:

|ψnm〉 =
∑

j

e2πij/3 |j〉 ⊗ |j +m mod 3〉 /√3 (9)
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where n,m, j = 0, 1, 2, their explicit expressions are there-
fore

|ψ00〉 = (|00〉 + |11〉 + |22〉) /
√

3

|ψ10〉 =
(

|00〉 + e2iπ/3 |11〉 + e4iπ/3 |22〉
)

/
√

3

|ψ20〉 =
(

|00〉 + e4iπ/3 |11〉 + e2iπ/3 |22〉
)

/
√

3

|ψ01〉 = (|01〉 + |12〉 + |20〉) /√3

|ψ11〉 =
(

|01〉 + e2iπ/3 |12〉 + e4iπ/3 |20〉
)

/
√

3

|ψ21〉 =
(

|01〉 + e4iπ/3 |12〉 + e2iπ/3 |20〉
)

/
√

3

|ψ02〉 = (|02〉 + |10〉 + |21〉) /
√

3

|ψ12〉 =
(

|02〉 + e2iπ/3 |10〉 + e4iπ/3 |21〉
)

/
√

3

|ψ22〉 =
(

|02〉 + e4iπ/3 |10〉 + e2iπ/3 |21〉
)

/
√

3. (10)

It is clear that these states are orthogonal. They can be
represented by 00, 01, 02, 10, 11, 12, 20, 21, 22, respec-
tively. It can be shown that single-body operators Uij
(i, j = 0, 1, 2) will transform |ψ00〉 into the correspond-
ing other eight states. The expressions for these operators
are:

U00 =

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ ; U10 =

⎛

⎝

1 0 0
0 e2πi/3 0
0 0 e4πi/3

⎞

⎠ ;

U20 =

⎛

⎝

1 0 0
0 e4πi/3 0
0 0 e2πi/3

⎞

⎠

U01 =

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠ ; U11 =

⎛

⎝

0 0 e4πi/3

1 0 0
0 e2πi/3 0

⎞

⎠ ;

U21 =

⎛

⎝

0 0 e2πi/3

1 0 0
0 e4πi/3 0

⎞

⎠

U02 =

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ ; U12 =

⎛

⎝

0 e2πi/3 0
0 0 e4πi/3

1 0 0

⎞

⎠ ;

U22 =

⎛

⎝

0 e4πi/3 0
0 0 e2πi/3

1 0 0

⎞

⎠ . (11)

The GCORE operations using qutrit states are similar to
the qubit cases presented in Section 2. However, there are
nine choices of GCORE operations, and the corresponding
relations are the following

E0 ↔ 00, E1 ↔ 01, E2 ↔ 02
E3 ↔ 10, E4 ↔ 11, E5 ↔ 12
E6 ↔ 20, E7 ↔ 21, E8 ↔ 22

and the GCORE is done for every nine general Bell-basis
states. These operations are denoted by the notation of

Fig. 3. Example of GCORE using 2-qutrit Bell-basis states;
there are nine different GCORE operations.

their permutation group

E0 =
(

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

)

=
(
1 1

)(
2 2

)(
3 3

)(
4 4

)(
5 5

)(
6 6

)(
7 7

)(
8 8

)(
9 9

)

E1 =
(

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 2

)

=
(
1 2

)(
2 3

)(
3 4

)(
4 5

)(
5 6

)(
6 7

)(
7 8

)(
8 9

)(
9 1

)

E2 =
(

1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 1 2

)

=
(
1 3

)(
2 4

)(
3 5

)(
4 6

)(
5 7

)(
6 8

)(
7 9

)(
8 1

)(
9 2

)

E3 =
(

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3

)

=
(
1 4

)(
2 5

)(
3 6

)(
4 7

)(
5 8

)(
6 9

)(
7 1

)(
8 2

)(
9 3

)

E4 =
(

1 2 3 4 5 6 7 8 9
5 6 7 8 9 1 2 3 4

)

=
(
1 5

)(
2 6

)(
3 7

)(
4 8

)(
5 9

)(
6 1

)(
7 2

)(
8 3

)(
9 4

)

E5 =
(

1 2 3 4 5 6 7 8 9
6 7 8 9 1 2 3 4 5

)

=
(
1 6

)(
2 7

)(
3 8

)(
4 9

)(
5 1

)(
6 2

)(
7 3

)(
8 4

)(
9 5

)

E6 =
(

1 2 3 4 5 6 7 8 9
7 8 9 1 2 3 4 5 6

)

=
(
1 7

)(
2 8

)(
3 9

)(
4 1

)(
5 2

)(
6 3

)(
7 4

)(
8 5

)(
9 6

)

E7 =
(

1 2 3 4 5 6 7 8 9
8 9 1 2 3 4 5 6 7

)

=
(
1 8

)(
2 9

)(
3 1

)(
4 2

)(
5 3

)(
6 4

)(
7 5

)(
8 6

)(
9 7

)

E8 =
(

1 2 3 4 5 6 7 8 9
9 1 2 3 4 5 6 7 8

)

=
(
1 9

)(
2 1

)(
3 2

)(
4 3

)(
5 4

)(
6 5

)(
7 6

)(
8 7

)(
9 8

)

the permutation has been shown clearly in Figure 3. Fig-
ure 4 shows a specific example of the main device neces-
sary to perform GCORE operation.

According to Figure 4, the upper QIC parts are trans-
mitted according to their temporal order. A control key
is used to rearrange the order of the lower QIC parts. For
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Down channel

Up channel

Fig. 4. Devices to perform GCORE operations, the loop rep-
resents a time delay of a fixed interval.

instance, if the value of the control key is 00, the operation
E0 is applied. In Figure 4 there are five switches, and the
order of the nine general Bell-basis states are unchanged
with switches 1, 2, 3, 4 and 5 in position (up, up, down,
up, up). When the control key is 01, E1 is performed, and
this is done by putting the nine switches into positions
(down, down, up, up, down), (up, down, up, up, up), (up,
down, up, up, up), (up, down, up, up, up), (up, down, up,
up, up), (up, down, up, up, up), (up, down, up, up, up),
(up, down, up, up, up), (up, down, up, up, up) for the
nine particles, respectively. Similar combinations can be
written explicitly for E2, E3, E4, E5, E6, E7, E8.

Now we can consider the cases of multi-particle and/or
high-dimension quantum systems. Firstly the method is
generalized to high dimension quantum systems (d > 3) of
two particles. Note that the d-dimension Bell-basis states
in a symmetric channel [9,27,29] are expressed as

|ψnm〉 =
∑

j

e2πijn/d |j〉 ⊗ |j +m mod d〉 /
√
d (12)

where n,m, j = 0, 1, · · ·d− 1. The unitary operator is

Unm =
∑

j

e2πijn/d |j +m mod d〉 〈j| (13)

which can transfer d-dimension state

|ψ00〉 =
∑

j

|j〉 ⊗ |j〉 /
√
d (14)

to another d-dimension Bell-basis state |ψnm〉, i.e.
Unm |ψ00〉 = |ψnm〉. So we can use the same method as in
2-qutrit GCORE to analyze this problem completely.

We have just presented the GCORE for two-particle,
high dimensional generalization, and next we will consider
the multi-particle situation. Here, we consider a less com-
plicated three particle quantum system, a 3-qutrit quan-
tum system. Its generalized maximally entangled basis
states are:
∣
∣ψknm

〉

=
∑

j

e2πijk/3

× |j〉 ⊗ |j + n mod 3〉 ⊗ |j +m mod 3〉 /
√

3 (15)

where n,m, k = 0, 1, 2, the explicit expressions are then

|ψ0
00〉 = (|000〉 + |111〉 + |222〉)/

√
3

|ψ0
01〉 = (|001〉 + |112〉 + |220〉)/

√
3

|ψ0
02〉 = (|002〉 + |110〉 + |221〉)/

√
3

· · ·
|ψ2

22〉 = (|022〉 + e4iπ/3|100〉 + e2iπ/3|222〉)/√3. (16)

Fig. 5. (a) Example of GCORE using 3-qutrit maximally en-
tangled basis states; (b) devices to perform GCORE opera-
tions, the loop represents a time delay of a fixed interval.

There are 27 corresponding GCORE operations, de-
noted by:

E0 ↔ 000, E1 ↔ 001, E2 ↔ 002, E3 ↔ 100,
E4 ↔ 101, E5 ↔ 102, E6 ↔ 200, E7 ↔ 201,
E8 ↔ 202, E9 ↔ 010, E11 ↔ 011, E11 ↔ 012,
E12 ↔ 110, E13 ↔ 111, E14 ↔ 112, E15 ↔ 210,
E16 ↔ 211, E17 ↔ 212, E18 ↔ 020, E19 ↔ 021,
E20 ↔ 022, E21 ↔ 120, E22 ↔ 121, E23 ↔ 122,
E24 ↔ 220, E25 ↔ 221, E26 ↔ 222. (17)

With an increase of dimension of GCORE operations,
more resources are needed, and the security analysis also
becomes more complicated. However, its maximal advan-
tage is tremendous increase in the swell of security. And
the probability that Eve guesses the right control key is
near 0. The corresponding figure is given in Figure 5.

Generally, a uniform expression of N -qutrit maximally
entangled basis states can be expressed in the following
form

|ψNi1,i2,··· ,iN−1
〉 =

∑

j

e2πijN/3|j〉 ⊗ |j + i1 mod 3〉

⊗ |j + i2 mod 3〉 ⊗ · · · ⊗ |j + iN−1 mod 3〉
√

3 (18)

where i1, i2 · · · iN = 0, 1, 2. Similar analysis can be given,
but there is a little difference. In short, there are 3N
different control keys, 3N operations corresponding to
E0, E1, · · ·E3N−1, and we need N quantum channels with
3N−1+1 switches each. The eavesdropper can only guesses
the right general Bell-basis state with probability 1

3N , as
the density operation is ρAB···N = 1

3N I3N×3N .

3.2 Security of GCORE using 2-qutrit general
Bell-basis states

Now, let us look at the security of the above GCORE pro-
tocol using 2-qutrit states. Eve has only an 11.1% chance
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to guess the right GCORE operation for nine general Bell-
basis states. If she uses the wrong GCORE operation,
the two particles she measured will be anticorrelated. As-
sume that particle A from the general Bell-basis state and
particle B from the second general Bell-basis state are
mistreated by Eve as a general Bell-basis state, then the
density operator will be

ρA1B2 = ρ̄A1 ⊗ ρ̄B2 =

⎛

⎜
⎜
⎜
⎜
⎝

1
3

0 0

0
1
3

0

0 0
1
3

⎞

⎟
⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎜
⎝

1
3

0 0

0
1
3

0

0 0
1
3

⎞

⎟
⎟
⎟
⎟
⎠

=
1
9
I9×9

(19)
where ρ̄A1 = TrB1 (ρA1B1), ρ̄B2 = TrA2 (ρA2B2) . The re-
sult indicates that any one of the nine general Bell-basis
states appears with a probability of 11.1%. Thus, Eve will
introduce an error rate of 79.01% in the result. Alice and
Bob can detect Eve easily by checking a sufficiently large
subset of randomly chosen results. Surely, Eve can take a
generalized Bell inequality measurement on the particles,
but it will be ineffective in decrypting the control key.

There are eight (Hermitian) generators of SU (3), i.e.
eight Gell-Mann matrices, which are defined by

⎛

⎝

0 1 0
1 0 1
0 1 0

⎞

⎠ ,

⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠ ,

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

⎛

⎝

0 0 1
0 0 0
1 0 0

⎞

⎠

⎛

⎝

0 0 −i
0 0 0
i 0 0

⎞

⎠ ,

⎛

⎝

0 0 0
0 0 1
0 1 0

⎞

⎠ ,

⎛

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎠ ,
1√
3

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠ ·

Let us choose directions M and N as the measurement of
directions of Alice and Bob where measurements satisfy
the orthogonality. The correlation operator can then be
written as:

Ê = Ŝ · M ⊗ Ŝ · N · (20)

The expectation values 〈E (M ,N )〉ψ = 〈ψ| Ŝ · M ⊗ Ŝ ·
N |ψ〉 are not equal for different general Bell-basis states

〈E (M ,N)〉ψ00
=

2
3

(

M1N1 −M2N2 +M3N3 +M4N4 −M5N5

+M6N6 −M7N7 +M8N8

)

〈E (M ,N)〉ψ01
=

1
3

(

2M4N1 + 2M5N2 −M3N3 −
√

3M8N3 + 2M6N4

+2M7N5 + 2M1N6 − 2M2N7 +
√

3M3N8 −M8N8

)

〈E (M ,N)〉ψ02
=

1
3

(

2M6N1 − 2M7N2 −M3N3 +
√

3M8N3 + 2M1N4

+2M2N5 + 2M4N6 + 2M5N7 −
√

3M3N8 −M8N8

)

〈E (M ,N)〉ψ10
=

−1 + i
√

3
3

M1N1 − −1 + i
√

3
3

M2N2 +
1 − i

√
3

6
M3N3

+
√

3 + i

6
M8N3 − 1 + i

√
3

3
M4N4 +

1 + i
√

3
3

M5N5

+
2
3
M6N6 − 2

3
M7N7 +

√
3 + i

6
M3N8 − 1 − i

√
3

6
M8N8

〈E (M ,N)〉ψ11
= −1 + i

√
3

3
M4N1 − 1 + i

√
3

3
M5N2

− 1
3
M3N3− i

3
M8N3 +

2
3
M6N4+

2
3
M7N5+

−1 + i
√

3
3

M1N6

+
1 − i

√
3

3
M2N7 − i

3
M3N8 +

1
3
M8N8

〈E (M ,N)〉ψ12
=

2
3
M6N1 − 2

3
M7N2 +

1 + i
√

3
6

M3N3

−
√

3 − i

6
M8N3d− 1 − i

√
3

3
M1N4 − 1 − i

√
3

3
M2N5

− 1 + i
√

3
3

M4N6 − 1 + i
√

3
3

M5N7

−
√

3 − i

6
M3N8 − 1 + i

√
3

6
M8N8

〈E (M ,N)〉ψ20
= −1 + i

√
3

3
M1N1 +

1 + i
√

3
3

M2N2

+
1 + i

√
3

6
M3N3 +

√
3 − i

6
M8N3 − 1 − i

√
3

3
M4N4

+
1 − i

√
3

3
M5N5 +

2
3
M6N6 − 2

3
M7N7

+
√

3 − i

6
M3N8 − 1 + i

√
3

6
M8N8

〈E (M ,N)〉ψ21
=

−1 + i
√

3
3

M4N1 +
−1 + i

√
3

3
M5N2

− 1
3
M3N3 +

i

3
M8N3 +

2
3
M6N4 +

2
3
M7N5− 1 + i

√
3

3
M1N6

+
1 + i

√
3

3
M2N7 +

i

3
M3N8 +

1
3
M8N8

〈E (M ,N)〉ψ22
=

2
3
M6N1 − 2

3
M7N2 +

1 − i
√

3
6

M3N3

−
√

3 + i

6
M8N3 − 1 + i

√
3

3
M1N4 − 1 + i

√
3

3
M2N5

− 1 − i
√

3
3

M4N6 − 1 − i
√

3
3

M5N7

−
√

3 + i

6
M3N8 − 1 − i

√
3

6
M8N8 (21)
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For product states |00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉,
|21〉, |22〉, the expectation values are

(

M3 +
M8√

3

) (

N3 +
N8√

3

)

,

(

M3 +
M8√

3

) (

−N3 +
N8√

3

)

,

−
(

M3 +
M8√

3

)
N8√

3
,

(

−M3 +
M8√

3

) (

N3 +
N8√

3
,

)

,

(
M8√

3
−M3

) (
N8√

3
−N3

)

,− 2√
3

(

−M3 +
M8√

3

)

N8,

− 2√
3

(

N3 +
N8√

3

)

N8,− 2√
3

(

−N3 +
N8√

3

)

M8,
4
3
M8N8

respectively. A similar analysis like CORE using EPR
pairs is straitforward.

The experimental realization of qutrit used in quantum
cryptography is important. Much progress has recently
been realized in achieving the production of general Bell-
basis state [31]. For example, in order to produce the state

|ψ00〉 = (|00〉 + |11〉 + |22〉) /
√

3 (22)

one uses an unbiased six-port beam splitter [31] which is a
device with the following property: if a photon enters any
single input port (of the three ports), there is an equal
probability that it will leave from each of the three out-
put ports,thus producing the desired state. In fact, one can
always construct a configuration of a six-port beam split-
ter with the distinguishing trait that the elements of its
unitary transition matrix, T , are solely powers of the com-
plex number, α = exp(i 2π3 ), namely, Tkl = 1√

3
α(k−1)(l−1).

It has been shown in reference [28] that any six-port beam
splitter can be constructed from the above-mentioned one
by adding appropriate phase shifters at its exit and input
ports (and by a trivial relabeling of the output ports). The
phase shifters in front of the input ports of beam split-
ter can be tunable and used to change the phase of the
incoming photon.

3.3 Security analysis of qutrit GCORE
using the quantum cloning machine

At this point, we will analyze the security of qutrit
GCORE against individual attacks (where Eve monitors
the qutrit separately). To date, much importan work has
been done on the analysis of security for BB84 or gener-
alized BB84 protocols using cloning machines [24,25,32].
Fortunately, GCORE protocols are also a propitious ex-
ample for analysis using these methods. For this case,
we consider a fairly general class of eavesdropping attack
based on — not necessarily universal — quantum cloning
machine. An appropriate measurement of the clone (and
the ancilla system) after disclosure of the basis enables
Eve to gain the maximal possible information on Alice’s
key bit.

We use a general class of cloning transformations as is
defined in references [24,25], and the resulting joint state

of the two clones (noted A and B) and of the cloning
machine (noted C) is

|ψ〉 →
N−1∑

m,n=0

am,nUm,n |ψ〉A |Bm,−n〉B,C

=
N−1∑

m,n=0

bm,nUm,n |ψ〉B |Bm,−n〉A,C (23)

where

Um,n =
N−1∑

k=0

e2πi(kn/N) |k +m〉 〈k| (24)

Um,n forms a group of qudit error operators, generalizing
the Pauli matrices for qubit: m labels the shift errors (ex-
tending the bit flip σx), while n labels the phase errors
(extending the phase flip σz). And

|Bm,n〉 = N− 1
2

N−1∑

k=0

e2πi(kn/N) |k〉 |k +m〉 (25)

with 0 ≤ m,n ≤ N − 1. Equation |Bm,n〉 defines the N2

generalized Bell states for a pair of N -dimensional sys-
tems. The final states of clones A and B are

ρA =
N−1∑

m,n=0

pm,n |ψm,n〉 〈ψm,n|

=
N−1∑

m,n=0

pm,nUm,n |ψ〉 〈ψ|U †
m,n

ρB =
N−1∑

m,n=0

qm,n |ψm,n〉 〈ψm,n|

=
N−1∑

m,n=0

qm,nUm,n |ψ〉 〈ψ|U †
m,n

· (26)

In addition, the weight functions of the two clones are
related by the Fourier transform

pm,n = |am,n|2 , qm,n = |bm,n|2 (27)

where am,n, bm,n are two (complex) amplitude functions
that are dual under a Fourier transformation:

bm,n =
1
N

N−1∑

x,y=0

e2πi(nx−my)/Nam,n. (28)

We first assume that Eve clones the qutrit state that is
sent to Bob. Eve will then measure her clone in the same
basis as Bob and her ancilla in the conjugate basis. To de-
rive Eve’s information, we need first to rewrite the cloning
transformation of these bases. If Alice sends any state |k〉
in the computational basis, the phase errors clearly do
not play any role in the mixture ρB, so the fidelity can be
expressed as:

F = 〈k| ρB |k〉 =
N−1∑

n=0

|a0,n|2. (29)
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In the rest of this subsection, we will use this general char-
acterization of cloning in order to investigate the state-
dependent cloning of qutrits, Alice sends the input state
|ψ〉 which belongs to a 3-dimensional space. For the cloner
to copy equally well the states of the computational bases,
we choose the amplitude am,n characterizing the cloner,
which must be of the form

(am,n) =

⎛

⎝

v x x
y y y
z z z

⎞

⎠ . (30)

Such a cloner is phase covariant, which means it acts iden-
tically on each state of the computational base.

The fidelity of the first clone (the one that is sent
to Bob) when copying a state |ψ〉 can be written,
in general, as

FA = 〈ψ| ρA |ψ〉 =
N−1∑

m,n=0

|am,n|2 |〈ψ| ψm,n〉|2

=
N−1∑

m,n=0

|〈ψ|Um,n |ψm,n〉|2. (31)

That is FA = v2 + y2 + z2. The disturbances DA1and
DA2of the first clone are:

DA1 = DA2 = x2 + y2 + z2. (32)

Through use of the

bm,n =
1
N

N−1∑

x,y=0

e2πi(nx−my)/Nam,n (33)

we can obtain that the second clone is maximal when y =
z, and the fidelity is given by

FB =
(

v2 + 2x2 + 12y2 + 8xy + 4vy
)

/3. (34)

Again, we get the same disturbances (minimal when y =
z) given by

DB1 = DB2 =
(

v2 + 2x2 + 3y2 − 4xy − 2vy
)

/3. (35)

For simplicity, one can consider the following amplitude
matrix [25]

(am,n) =

⎛

⎝

v x x
x x x
x x x

⎞

⎠ (36)

where v, x are real parameters which satisfy the normal-
ization condition v2 + 8x2 = 1. It’s easily verified that
this cloner’s results achieve the same fidelity and same
disturbance for any qutrit state:

F = v2 + 2x2, D1 = D2 = 3x2. (37)

Of course we have the relation: F + D1 +D2 = 1. It can
therefore be stated that the symmetric universal qutrit
cloner is characterized by a fidelity of 3/4.

Now, it is simple to analyze its security against an
incoherent attack. Bob’s fidelity is F = v2 + 2x2 and the
corresponding mutual information between Alice and Bob
(if the latter measures his clone in the correct basis) [24]
is given by

IAB = log2 3 + F log2 F + (1 − F ) log2

1 − F

2
(38)

since two possible errors are equiprobable. The cloning
fidelity for Eve is given by

FE =
(v + 8x)2 + 2 (v − x)2

9
· (39)

Maximizing Eve’s fidelity using the normalization relation
v2 + 8x2 = 1 yields the optimal cloner

x =

√

F (1 − F )
2

, v = F. (40)

The corresponding optimal fidelity for Eve is

FE =
F

3
+

2
3

(1 − F ) +
2
3

√

2F (1 − F ). (41)

Let us now see how Eve can maximize her information
on Alice’s state. If Alice sends the state |k〉 (k = 0, 1, 2),
then it is clear that Eve can obtain Bob’s error simply
by performing a practical Bell measurement (measuring
only the m index) on BC. In order to infer Alice’s state,
Eve must distinguish between three states (|0〉, |1〉, |2〉)
with the same scalar product 3F−1

2 for all pairs of states,
regardless of the measured value ofm. Consequently, Eve’s
information [24] is

IAE = log2 3 + FE log2 FE + (1 − FE) log2

1 − FE
2

· (42)

As a result, Bob and Eve’s information curves intersect
exactly where the fidelities coincide, that is, at F = FE =
1
2

(

1 + 1√
3

)

.
Using the theorem given by Csiszar and Korner [27],

one can obtain a lower bound on the secret key rate. Con-
cretely, it is sufficient to require IAB > IAC in order to
establish a secret key with a nonzero rate. If the one-way
communication on a classical channel is used, this is ac-
tually a necessary condition. Consequently, the GCORE
protocols cease to generate secret key bits precisely at the
point where Eve attains Bob’s information.

We compute the disturbance Dqutrit = 1 − F =
1
2

(

1 − 1√
3

)

(or error rate) at which IAB = IAE (or F =
FE), that is, above which Alice and Bob can not distill a
secret key any more through by use of a one-way privacy
amplification protocol. While the disturbance for the pro-
tocol using qubits is Dqubit = 1

2

(

1 − 1√
2

)

, we can easily
see Dqubit < Dqutrit. Thus we can say that disturbance
increases with the dimension, suggesting that mutual in-
formation between Alice and Eve qutrit cryptosystem is
smaller than that in the qubit cryptosystem under the
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same conditions. In other words, Eve obtains less infor-
mation in the qutrit scheme. Our analysis thus confirms a
seemingly general property that a qutrit scheme for QKD
is more robust against eavesdropping than the correspond-
ing qubit scheme.

4 Analysis and conclusion

For m particles and/or higher dimension quantum sys-
tems, we can provide the uniform expression of maximally
entangled basis states. Assuming that the number of par-
ticles is n, and that the number of dimension is d, the
maximally entangled basis states are

∣
∣ψni1,i2,···in

〉

=
∑

j

e2πijn/d |j〉 ⊗ |j + i1 mod d〉

⊗ |j + i2 mod d〉 ⊗ · · · |j + in mod d〉 /
√
d. (43)

A similar analysis can be done for dimensions other than
2 or 3. If the dimension is not limited to 2, 3. If Eve can
measure the states without disturbing the system, then
they are eigenstates of the measuring operator, otherwise,
she will produce errors most of time. Otherwise, Eve can
only guess the control key randomly, she has no means
to decipher the control key. In other words, the security
of the GCORE operation for multi-particle and/or higher
dimension quantum systems is even greater.

Compared to other QKD protocols using orthogonal
states, one distinct feature of our scheme is its high effi-
ciency. The information-theoretic efficiency defined in ref-
erence [20] is:

η =
bs

qt + bt
(44)

where bs is the number of secret bits received by Bob, qt is
the number of qubits used, and bt is the number of classical
bits exchanged between Alice and Bob during the QKD
process. The efficiency of any QKD protocol, defined as
the number of secret (i.e. allowing eavesdropping detec-
tion) bits per transmitted bit plus qubit, satisfies η ≤ 1.
The efficiency of the presented protocol becomes 100%,
because bs = log2 d

N , qt = log2 d
N , bt = 0. In this way,

one can calculate out that the efficiency of BB84 is 25%,
and similarly, the efficiency of the EPR protocol is 50%.
To the best of our knowledge, two protocols reach the limit
value of η = 1. One protocol is provided by Cabello (high
capacity Cabello protocol, HCCP) [20] and the other is
proposed by Long and Liu (high capacity Long Liu pro-
tocol HCLLP) [21]. Both protocols exploit the fact that a
possible eavesdropper with no simultaneous access to the
entire quantum system, cannot recover all the informa-
tion without being detected, and both employ a larger al-
phabet, a few-dimensional orthogonal basis of pure states.
In addition, some modifications of BB84 and EPR proto-
cols [22,23] also can achieve 100% efficiency according to
equation (44), such as the known efficient BB84 protocol
provided by Lo, Chau and Ardehali [22]. The GCORE
has the same characteristics, so it can also achieve full
efficiency from this point of view.

Fig. 6. Relationship between fidelity and mutual information
in which solid curve represents the mutual information between
Alice and Eve; the dashed curve represents the mutual infor-
mation between Alice and Bob.

Another feature of the scheme is its high capacity, since
the four possible states of the EPR pairs carry two bits
of information (log2 4 = 2), eight possible states of GHZ-
basis states carry three bits of information (log2 23 = 3).
Similarly, the nine possible states of the 2-qutrit general
Bell-basis states carry log2 9 bits of information, the 27
possible states of the 3-qutrit general maximally entan-
gled basis states carry log2 33 bits of information, and we
can state that the possible states of the N -qudit maxi-
mally entangled basis state carry log2 d

N bits of informa-
tion. In short, the number of pairs of transmitted qubits
in a GCORE carrier unit is log2 d

N . Whereas in the EPR
scheme each adopted EPR pair (particles) encodes one bit
of information, only one qubit is transmitted from Alice to
Bob for each pair, so the amount of information per carrier
particle is one bit. However, if we use the control key to
control the GCORE operation of a group of units, we can
save greatly reduce resource usage. From a resource usage
perspective, therefore, the GCORE protocol is superior.

In QKD, our scheme is just a one-to-one protocol,
but/and there are other protocols using different ways to
distribute secret keys [1–3,7–21]. As we know, Townsend’s
protocol [33] is a one-to-any protocol, where Alice acts as
a single controller to establish and update a distinct se-
cret key with each network user. An any-to-any protocol
has been proposed to allow any two users to establish a
secret key over an optical network by Phoenix et al. [34].
The present scheme can be generalized to distribute se-
cret keys to multiple legitimate users. It is different from
Townsend and Phoenix’s protocol in that the secret keys
are common to all legitimate users. We demonstrate the
concrete protocol using EPR pairs for simplicity: after
Alice has sent the keys to Bob, Bob can create using EPR
pairs sequence that carries the raw keys. Then he sends
this EPR pair sequence to another legitimate user, Clare,
using the same procedure and device as before. The key
protocols common to Alice, Bob and Clare are those Bell-
basis measurement results that are not chosen to check
eavesdropping. In this way, the protocol can be general-
ized to a multiparty common key distribution protocol.

Note that all of the GCORE protocols have a final
step, i.e. error correction and privacy amplification [33].
We shall not discuss these points, which are the same as
those in all cryptographic protocols, except that we have
to use qutrits (qudits) instead of bits, and therefore parity
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checks becomes triality checks, that is sums of modulo
3 (d).

In summary, we have extended the concept of CORE
to N -qubit,N -qutrit quantum systems. We have proposed
the protocols in detail and have given the corresponding
security analysis of 3-qubit, 2-qutrit maximally entangled
states. Finally, in this paper, we have demonstrated re-
peatedly the GCORE using a general expression of multi-
particle and high dimension maximally entangled basis
state by using repeatedly a priori shared control key. The
generalized version has great capacity and high efficiency.
In addition, the control key can be used to control the
GCORE operation of a group of units, which greatly sim-
plifies the experimental realization and enables quantum
key distribution in a more efficient way.

We thank Feng Xu, Ren-Gui Zhu, Xiao-Qiang Su, Liang
Qiu, De-Hui Zhan, Xue-Chao Li and Zhu-Qiang Zhang for
useful discussions. This project was supported by the Na-
tional Basic Research Programme of China under Grant
No. 2001CB309310, the National Natural Science Foundation
of China under Grant No. 60573008.

References

1. C.H. Bennett, G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems and
Signal Processing, Bangalore, India, IEEE, New York,
1984, pp. 175–179

2. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)
3. C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev Lett.

68, 557 (1992)
4. C.H. Bennett, Phys. Rev. Lett. 8, 3121 (1992)
5. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881

(1992)
6. D. Brub, Phys. Rev. A 65, 032118 (2002); D. Brub, Phys.

Rev. Lett. 81, 3018 (1998); H. Bechmann-Pasquinucci, N.
Gisin, Phys. Rev. A 59, 4238 (1999)

7. W.Y. Hwang, I.G. Koh, Y.D. Han, Phys. Lett. A 244, 489
(1998)

8. L. Goldenberg, L. Vaidman, Phys. Rev. Lett. 75, 1239
(1995); A. Peres, Phys. Rev. Lett. 77, 3264 (1996); L.
Goldenberg, L. Vaidmann, Phys. Rev. Lett. 77, 3265
(1996)

9. M. Koashi, N. Imoto, Phys. Rev. Lett. 79, 2383 (1999)
10. F.-G. Deng, G.L. Long, Phys. Rev. A 68 042315 (2003)
11. H. Bechmann-Pasquinucci, A. Peres, Phys. Rev. Lett. 85,

3313 (2000)
12. H. Bechmann-Pasquinucci, W. Tittel, Phys. Rev. A 61,

062308 (2000)
13. Mohamed Bourennane, A. Karlsson, Gunnar Bjork, Phys.

Rev. A 64, 012306 (2001)
14. J.C. Boileau, K. Tamaki, J. Batuwantudawe, R. Laflamme,

J.M. Renes, Phys. Rev. Lett. 94, 040503 (2005)
15. J.M. Renes, Phys. Rev. A 70, 052314 (2004)
16. J.C. Boileau, K. Tamaki, J. Batuwantudawe, R. Laflamme,

J.M. Renes, Phys. Rev. Lett. 94, 040503 (2005)
17. P. Xue, C.-F. Li, G.-C. Guo, Phy. Rev. A 64, 032305 (2001)
18. P. Xue, Ch.-F. Li, G.-C. Guo, Phy. Rev. A 65, 034302

(2002)
19. K. Tamaki, M. Koashi, N. Imoto, Phys. Rev. Lett. 90,

167904 (2003)
20. A. Cabello, Phys. Rev. Lett. 85, 5635 (2000)
21. G.L. Long, X.S. Liu, Phys. Rev. A 65, 032302 (2002)
22. H.-K. Lo, H.F. Chau, M. Ardehali, J. Cryptol. 18, 133

(2005); e-print arXiv:quant-ph/0011056
23. J. Wang, Q. Zhong, C.-J. Tang, e-print

arXiv:quant-ph/0510208

24. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002)

25. N.J. Cerf, T. Durt, N. Gisin J. Mod. Opt. 49, 1355 (2002);
e-print arXiv:quant-ph/0110092

26. W. Dur, J.I. Cirac, Phys. Rev. A 61, 042314 (2000); e-print
arXiv:quant-ph/9911044

27. I. Csiszar, J. Korner, IEEE Trans. Inf. Theory 24, 339
(1978)

28. M. Bourennane, A. Karlsson, G. Bjork, N. Gisin, N.J. Cerf,
J. Phys. A 35, 10065 (2002); e-print quant-ph/0106049

29. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
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